login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052371
Triangle T(n,k) of n X n binary matrices with k=0...n^2 ones up to row and column permutations.
6
1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 6, 7, 7, 6, 3, 1, 1, 1, 1, 3, 6, 16, 21, 39, 44, 55, 44, 39, 21, 16, 6, 3, 1, 1, 1, 1, 3, 6, 16, 34, 69, 130, 234, 367, 527, 669, 755, 755, 669, 527, 367, 234, 130, 69, 34, 16, 6, 3, 1, 1
OFFSET
0,6
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2890 (rows n=0..20)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 3, 1, 1;
1, 1, 3, 6, 7, 7, 6, 3, 1, 1;
1, 1, 3, 6, 16, 21, 39, 44, 55, 44, 39, 21, 16, 6, 3, 1, 1;
...
(the last block giving the numbers of 4 X 4 binary matrices with k=0..16 ones up to row and column permutations).
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, t, i, k = 0}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
c[p_, q_] := Product[(1 + x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {i, 1, Length[p]}, {j, 1, Length[q]}];
row[n_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q], {q, IntegerPartitions[n]}], {p, IntegerPartitions[n]}]; CoefficientList[ s/(n!^2), x]]
row /@ Range[0, 5] // Flatten (* Jean-François Alcover, Sep 22 2019, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
c(p, q)={prod(i=1, #p, prod(j=1, #q, (1 + x^lcm(p[i], q[j]))^gcd(p[i], q[j])))}
row(n)={my(s=0); forpart(p=n, forpart(q=n, s+=permcount(p) * permcount(q) * c(p, q))); Vec(s/(n!^2))}
for(n=1, 5, print(row(n))) \\ Andrew Howroyd, Nov 14 2018
CROSSREFS
Rows 6..8 are A052370, A053304, A053305.
Row sums are A002724.
Cf. A049311.
Sequence in context: A124389 A366789 A027023 * A062278 A260638 A268523
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Mar 08 2000
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Nov 14 2018
STATUS
approved