Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 22 2017 02:36:31
%S 1,1,0,1,1,0,1,1,0,0,1,1,2,0,0,1,1,2,1,0,0,1,1,2,5,0,0,0,1,1,2,5,6,0,
%T 0,0,1,1,2,5,14,6,0,0,0,1,1,2,5,14,26,4,0,0,0,1,1,2,5,14,42,44,1,0,0,
%U 0,1,1,2,5,14,42,100,69,0,0,0,0
%N Array read by antidiagonals: a(n,k)= coefficient of z^n of p_k(z), where p_k+1(z)=(p_k(z))^2+z, p_1(z)=z.
%C a(n,k+1)=a(n,k), n<=k; a(n,n)=A000108. Note that the set {z: limit(p_k(z),k->infinity) not=infinity} of complex numbers defines the Mandelbrot set.
%H R. P. Munafo, <a href="http://www.mrob.com/pub/muency.html">Mu-Ency - The Encyclopedia of the Mandelbrot Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MandelbrotSet.html">Mandelbrot Set</a>
%H R. Munafo, <a href="http://www.mrob.com/pub/math/seq-a052154.html">Coefficients of Lemniscates for Mandelbrot Set</a>
%F a(n, k+1)=sum(a(i, k)*a(n-i, k), i=1..n-1) for n=2..2^k, a(1, k)=1, a(n, k+1)=0 for n>2^k.
%e p_1(z)=z: coefficient = 1 = a(1,1); p_2(z)=z^2+z: coefficients = 1, 1 = a(1,2), a(2,2); p_3(z)=(z^2+z)^2+z=z+z^2+2z^3+z^4: coefficients = 1,1,2,1 = (1,3), a(2,3), a(3,3), a(4,3); ...
%e Triangle starts:
%e 1,
%e 1, 0,
%e 1, 1, 0,
%e 1, 1, 0, 0,
%e 1, 1, 2, 0, 0,
%e 1, 1, 2, 1, 0, 0,
%e 1, 1, 2, 5, 0, 0, 0,
%e 1, 1, 2, 5, 6, 0, 0, 0,
%e 1, 1, 2, 5, 14, 6, 0, 0, 0,
%e 1, 1, 2, 5, 14, 26, 4, 0, 0, 0,
%e 1, 1, 2, 5, 14, 42, 44, 1, 0, 0, 0,
%e 1, 1, 2, 5, 14, 42, 100, 69, 0, 0, 0, 0,
%e ...
%t p[1, z_] := z; p[k_, z_] := p[k, z] = p[k-1, z]^2 + z; a[n_, k_] := Coefficient[p[k, z], z, n]; Flatten[ Table[a[n-k, k], {n, 1, 13}, {k, n-1, 1, -1}]] (* _Jean-François Alcover_, Jun 13 2012 *)
%Y Cf. A000108.
%Y Cf. A137560, which gives the same array read by rows. [From _Robert Munafo_, Dec 12 2009]
%K nice,nonn,tabl,easy
%O 1,13
%A Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 24 2000