login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052154
Array read by antidiagonals: a(n,k)= coefficient of z^n of p_k(z), where p_k+1(z)=(p_k(z))^2+z, p_1(z)=z.
2
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 5, 0, 0, 0, 1, 1, 2, 5, 6, 0, 0, 0, 1, 1, 2, 5, 14, 6, 0, 0, 0, 1, 1, 2, 5, 14, 26, 4, 0, 0, 0, 1, 1, 2, 5, 14, 42, 44, 1, 0, 0, 0, 1, 1, 2, 5, 14, 42, 100, 69, 0, 0, 0, 0
OFFSET
1,13
COMMENTS
a(n,k+1)=a(n,k), n<=k; a(n,n)=A000108. Note that the set {z: limit(p_k(z),k->infinity) not=infinity} of complex numbers defines the Mandelbrot set.
FORMULA
a(n, k+1)=sum(a(i, k)*a(n-i, k), i=1..n-1) for n=2..2^k, a(1, k)=1, a(n, k+1)=0 for n>2^k.
EXAMPLE
p_1(z)=z: coefficient = 1 = a(1,1); p_2(z)=z^2+z: coefficients = 1, 1 = a(1,2), a(2,2); p_3(z)=(z^2+z)^2+z=z+z^2+2z^3+z^4: coefficients = 1,1,2,1 = (1,3), a(2,3), a(3,3), a(4,3); ...
Triangle starts:
1,
1, 0,
1, 1, 0,
1, 1, 0, 0,
1, 1, 2, 0, 0,
1, 1, 2, 1, 0, 0,
1, 1, 2, 5, 0, 0, 0,
1, 1, 2, 5, 6, 0, 0, 0,
1, 1, 2, 5, 14, 6, 0, 0, 0,
1, 1, 2, 5, 14, 26, 4, 0, 0, 0,
1, 1, 2, 5, 14, 42, 44, 1, 0, 0, 0,
1, 1, 2, 5, 14, 42, 100, 69, 0, 0, 0, 0,
...
MATHEMATICA
p[1, z_] := z; p[k_, z_] := p[k, z] = p[k-1, z]^2 + z; a[n_, k_] := Coefficient[p[k, z], z, n]; Flatten[ Table[a[n-k, k], {n, 1, 13}, {k, n-1, 1, -1}]] (* Jean-François Alcover, Jun 13 2012 *)
CROSSREFS
Cf. A000108.
Cf. A137560, which gives the same array read by rows. [From Robert Munafo, Dec 12 2009]
Sequence in context: A113652 A106139 A350871 * A360002 A039977 A197548
KEYWORD
nice,nonn,tabl,easy
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 24 2000
STATUS
approved