The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052007 Numbers m such that 2^m + m is prime. 13
1, 3, 5, 9, 15, 39, 75, 81, 89, 317, 701, 735, 1311, 1881, 3201, 3225, 11795, 88071, 204129, 678561 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Terms >= 701 are currently only strong pseudoprimes.
If m=1 (mod 6) or m=2 (mod 6) then 3 divides 2^m+m. Thus for n > 1, a(n)!=1 (mod 6) and a(n)!=2 (mod 6).
Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 14 2019
Keller (see Links) notes that a Mersenne number M(2^m+m) = 2^(2^m+m) - 1 can be written as (2^m)*2^(2^m) - 1, and lists the first twelve terms of this sequence. The last known case where M(2^m+m) is prime is for m=a(4)=9, which gives the prime M(521). - Jeppe Stig Nielsen, Apr 20 2021
LINKS
W. Keller, New Cullen Primes, Math. Comp. 64 (1995), 1733-1741, S39.
Henri Lifchitz, Renaud Lifchitz, PRP Top Records. 2^n+n.
EXAMPLE
2^39 + 39 = 549755813927 is prime.
MATHEMATICA
Do[ If[ PrimeQ[ 2^n + n ], Print[ n ] ], {n, 0, 7000} ]
v={1}; Do[If[Mod[n, 2]*(Mod[n, 6]-1)!= 0&&PrimeQ[2^n+n], v=Append[v, n]; Print[v]], {n, 2, 20000}]
PROG
(PARI) is(n)=isprime(2^n+n) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Sequence in context: A217350 A210844 A200148 * A117480 A018260 A334876
KEYWORD
nonn,nice,hard,more
AUTHOR
EXTENSIONS
11795 from Farideh Firoozbakht, Aug 21 2003
88071 from Hugo Pfoertner, Dec 26 2004
More terms from Henri Lifchitz submitted by Ray Chandler, Mar 02 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 16:47 EDT 2024. Contains 372664 sequences. (Running on oeis4.)