Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 29 2017 08:57:26
%S 0,-1,1,-2,3,-4,4,-3,2,-3,6,-8,6,-2,1,-4,7,-8,8,-6,2,-2,8,-11,6,-1,2,
%T -6,10,-12,10,-6,2,0,5,-12,9,-2,4,-10,12,-12,10,-4,-2,0,10,-15,10,-5,
%U 4,-6,10,-10,8,-8,4,-2,12,-20,12,0,-1,-4,7,-10,10,-6,6,-10,16,-20,12,0,-2,-2,6,-10,14,-13,4
%N Second differences of tau(n).
%C a(0) = 0 assuming tau(0) = 0. - _Michael Somos_, Mar 05 2014
%H Robert Israel, <a href="/A051951/b051951.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f.: -1/x + (1 - x)^2*Sum_{k>=1} x^(k-2)/(1 - x^k). - _Ilya Gutkovskiy_, Jan 29 2017
%e G.f. = - x + x^2 - 2*x^3 + 3*x^4 - 4*x^5 + 4*x^6 - 3*x^7 + 2*x^8 - 3*x^9 + ...
%p Taus:= map(numtheory:-tau, [$0..100]):
%p Taus[3..-1] - 2*Taus[2..-2] + Taus[1..-3]; # _Robert Israel_, Dec 07 2015
%t Join[{0},Differences[DivisorSigma[0,Range[90]],2]] (* _Harvey P. Dale_, Jan 10 2014 *)
%t a[ n_] := SeriesCoefficient[ (QHypergeometricPFQ[ {x, x}, {x^2, x^2}, x, x^2] - 1) / x, {x, 0, n}]; (* _Michael Somos_, Mar 05 2014 *)
%Y Cf. A000005, A051950.
%K sign
%O 0,4
%A _N. J. A. Sloane_, Dec 17 1999