login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051951
Second differences of tau(n).
1
0, -1, 1, -2, 3, -4, 4, -3, 2, -3, 6, -8, 6, -2, 1, -4, 7, -8, 8, -6, 2, -2, 8, -11, 6, -1, 2, -6, 10, -12, 10, -6, 2, 0, 5, -12, 9, -2, 4, -10, 12, -12, 10, -4, -2, 0, 10, -15, 10, -5, 4, -6, 10, -10, 8, -8, 4, -2, 12, -20, 12, 0, -1, -4, 7, -10, 10, -6, 6, -10, 16, -20, 12, 0, -2, -2, 6, -10, 14, -13, 4
OFFSET
0,4
COMMENTS
a(0) = 0 assuming tau(0) = 0. - Michael Somos, Mar 05 2014
LINKS
FORMULA
G.f.: -1/x + (1 - x)^2*Sum_{k>=1} x^(k-2)/(1 - x^k). - Ilya Gutkovskiy, Jan 29 2017
EXAMPLE
G.f. = - x + x^2 - 2*x^3 + 3*x^4 - 4*x^5 + 4*x^6 - 3*x^7 + 2*x^8 - 3*x^9 + ...
MAPLE
Taus:= map(numtheory:-tau, [$0..100]):
Taus[3..-1] - 2*Taus[2..-2] + Taus[1..-3]; # Robert Israel, Dec 07 2015
MATHEMATICA
Join[{0}, Differences[DivisorSigma[0, Range[90]], 2]] (* Harvey P. Dale, Jan 10 2014 *)
a[ n_] := SeriesCoefficient[ (QHypergeometricPFQ[ {x, x}, {x^2, x^2}, x, x^2] - 1) / x, {x, 0, n}]; (* Michael Somos, Mar 05 2014 *)
CROSSREFS
Sequence in context: A090281 A316823 A372982 * A262857 A107898 A128863
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 17 1999
STATUS
approved