|
|
A051639
|
|
Concatenation of 3^k, k = 0,..,n.
|
|
1
|
|
|
1, 13, 139, 13927, 1392781, 1392781243, 1392781243729, 13927812437292187, 139278124372921876561, 13927812437292187656119683, 1392781243729218765611968359049, 1392781243729218765611968359049177147, 1392781243729218765611968359049177147531441
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000
|
|
LINKS
|
|
|
EXAMPLE
|
139 belongs to the sequence because it is the concatenation of 3^0, 3^1 and 3^2.
|
|
MAPLE
|
cat2 := proc(a, b) dgsb := max(1, ilog10(b)+1) ; a*10^dgsb+b ; end proc:
catL := proc(L) local a; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
A051639 := proc(n) catL([seq(3^k, k=0..n)]) ; end proc: seq(A051639(n), n=0..20) ; (End)
# second Maple program:
a:= proc(n) a(n):= `if`(n<0, 0, parse(cat(a(n-1), 3^n))) end:
|
|
MATHEMATICA
|
With[{p3=3^Range[0, 15]}, Table[FromDigits[Flatten[IntegerDigits/@ Take[ p3, n]]], {n, 15}]] (* Harvey P. Dale, Sep 13 2011 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|