login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051639
Concatenation of 3^k, k = 0,..,n.
1
1, 13, 139, 13927, 1392781, 1392781243, 1392781243729, 13927812437292187, 139278124372921876561, 13927812437292187656119683, 1392781243729218765611968359049, 1392781243729218765611968359049177147, 1392781243729218765611968359049177147531441
OFFSET
0,2
REFERENCES
A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000
EXAMPLE
139 belongs to the sequence because it is the concatenation of 3^0, 3^1 and 3^2.
MAPLE
From R. J. Mathar, Oct 10 2010: (Start)
cat2 := proc(a, b) dgsb := max(1, ilog10(b)+1) ; a*10^dgsb+b ; end proc:
catL := proc(L) local a; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
A051639 := proc(n) catL([seq(3^k, k=0..n)]) ; end proc: seq(A051639(n), n=0..20) ; (End)
# second Maple program:
a:= proc(n) a(n):= `if`(n<0, 0, parse(cat(a(n-1), 3^n))) end:
seq(a(n), n=0..12); # Alois P. Heinz, May 30 2021
MATHEMATICA
With[{p3=3^Range[0, 15]}, Table[FromDigits[Flatten[IntegerDigits/@ Take[ p3, n]]], {n, 15}]] (* Harvey P. Dale, Sep 13 2011 *)
CROSSREFS
Cf. A000244. - R. J. Mathar, Oct 10 2010
Sequence in context: A064103 A266630 A186506 * A138931 A157160 A263480
KEYWORD
base,nonn
AUTHOR
Felice Russo, Nov 15 1999
EXTENSIONS
Terms n>=7 corrected by R. J. Mathar, Oct 10 2010
STATUS
approved