|
|
A051384
|
|
Sum of two (possibly negative) cubes in at least 4 ways.
|
|
3
|
|
|
2741256, 4118877, 6017193, 6742008, 9016488, 16776487, 21930048, 28699272, 32951016, 36875384, 42549416, 48137544, 48275136, 52324993, 53936064, 70957971, 72131904, 74013912, 87539319, 94287375, 102977784, 105651000, 111209679, 119824488, 122262264, 124454421, 134211896
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence is infinite, since if n is in the sequence so is n*k^3 for all k > 0; thus a(n) << n^3. - Charles R Greathouse IV, Nov 29 2014
|
|
LINKS
|
Rosalie Fay, Table of n, a(n) for n = 1..100
Joseph H. Silverman, Taxicabs and sums of two cubes, Amer. Math. Monthly, 100 (1993), 331-340.
|
|
EXAMPLE
|
42549416 = 348^3+74^3 = 282^3+272^3 = (-2662)^3+2664^3 = (-475)^3+531^3, so 42549416 is in the sequence. (Silverman)
|
|
PROG
|
(PARI) T=thueinit('z^3+1); is(n)=my(v=thue(T, n)); #v>6 && #select(u->u[1]<=u[2], v)>3 \\ Charles R Greathouse IV, Nov 29 2014
|
|
CROSSREFS
|
Cf. A051347, A051383.
Sequence in context: A251997 A104848 A234370 * A251350 A238070 A306634
Adjacent sequences: A051381 A051382 A051383 * A051385 A051386 A051387
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Colin Mallows
|
|
EXTENSIONS
|
a(6)-a(22) from Donovan Johnson, Apr 17 2010
Missing terms 42549416, 48275136, 94287375, 111209679, 124454421 added by Rosalie Fay, Oct 13 2017
|
|
STATUS
|
approved
|
|
|
|