|
|
A050924
|
|
a(n) = (a(n-1)+1)^(a(n-1)), a(0) = 0.
|
|
15
|
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Let S(1) c S(2) c ... c S(n) c ... be an increasing sequence of sets of partial functions that is defined as follows: S(0) = empty set, S(n) = {partial functions: S(n-1) -> S(n-1)}. Then |S(n)| = a(n). - Jon Awbrey, Jul 04 2005
|
|
LINKS
|
Table of n, a(n) for n=0..4.
J. Awbrey, Riffs and Rotes
|
|
MATHEMATICA
|
NestList[(#+1)^#&, 0, 4] (* Harvey P. Dale, Aug 13 2020 *)
|
|
CROSSREFS
|
Cf. A109300, A109301.
Sequence in context: A309861 A140319 A120314 * A181500 A189876 A189867
Adjacent sequences: A050921 A050922 A050923 * A050925 A050926 A050927
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 30 1999
|
|
EXTENSIONS
|
The next term is approximately e * 10^9000000000, with nine-place accuracy. - Franklin T. Adams-Watters, Nov 16 2006
a(5) = 2.7182818270999043223766*10^9000000000 = e * 10^9000000000 * 0.9999999995000000004583. - Jon E. Schoenfield, Nov 24 2013
|
|
STATUS
|
approved
|
|
|
|