Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 15 2022 09:57:13
%S 1,11,60,228,690,1782,4092,8580,16731,30745,53768,90168,145860,228684,
%T 348840,519384,756789,1081575,1519012,2099900,2861430,3848130,5112900,
%U 6718140,8736975,11254581,14369616,18195760,22863368,28521240,35338512,43506672,53241705,64786371
%N Partial sums of A051947.
%D Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).
%F a(n) = C(n+6, 6)*(4n+7)/7.
%F G.f.: (1+3*x)/(1-x)^8. - proposed by Maksym Voznyy checked and corrected by _R. J. Mathar_, Sep 16 2009
%F Sum_{n>=0} 1/a(n) = 57344*Pi/663 - 114688*log(2)/221 + 295372/3315. - _Amiram Eldar_, Feb 15 2022
%t Table[(4*n + 7)*Binomial[n + 6, 6]/7, {n, 0, 40}] (* _Amiram Eldar_, Feb 15 2022 *)
%Y Cf. A051947.
%Y Cf. A093561 ((4, 1) Pascal, column m=7).
%K easy,nonn
%O 0,2
%A _Barry E. Williams_, Dec 26 1999