login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050483
Partial sums of A051947.
2
1, 11, 60, 228, 690, 1782, 4092, 8580, 16731, 30745, 53768, 90168, 145860, 228684, 348840, 519384, 756789, 1081575, 1519012, 2099900, 2861430, 3848130, 5112900, 6718140, 8736975, 11254581, 14369616, 18195760, 22863368, 28521240, 35338512, 43506672, 53241705, 64786371
OFFSET
0,2
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = C(n+6, 6)*(4n+7)/7.
G.f.: (1+3*x)/(1-x)^8. - proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
Sum_{n>=0} 1/a(n) = 57344*Pi/663 - 114688*log(2)/221 + 295372/3315. - Amiram Eldar, Feb 15 2022
MATHEMATICA
Table[(4*n + 7)*Binomial[n + 6, 6]/7, {n, 0, 40}] (* Amiram Eldar, Feb 15 2022 *)
CROSSREFS
Cf. A051947.
Cf. A093561 ((4, 1) Pascal, column m=7).
Sequence in context: A076676 A044149 A044530 * A066999 A224291 A055826
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Dec 26 1999
STATUS
approved