login
T(n,4), array T as in A050186; a count of aperiodic binary words.
0

%I #9 Jun 12 2016 01:23:59

%S 0,5,12,35,64,126,200,330,480,715,980,1365,1792,2380,3024,3876,4800,

%T 5985,7260,8855,10560,12650,14872,17550,20384,23751,27300,31465,35840,

%U 40920,46240,52360,58752,66045,73644,82251,91200

%N T(n,4), array T as in A050186; a count of aperiodic binary words.

%F Seems to be n * A006918.

%F From _Chai Wah Wu_, Jun 11 2016: (Start)

%F a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 11 (conjectured).

%F G.f.: x^5*(5 + 2*x + x^2)/((1 - x)^5*(1 + x)^3) (conjectured). (End)

%Y Cf. A006918, A050186.

%K nonn

%O 4,2

%A _Clark Kimberling_