login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050048
a(n) = a(n-1) + a(m) for n >= 3, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 2.
10
1, 2, 3, 4, 7, 8, 11, 18, 29, 30, 33, 40, 51, 80, 113, 164, 277, 278, 281, 288, 299, 328, 361, 412, 525, 802, 1083, 1382, 1743, 2268, 3351, 5094, 8445, 8446, 8449, 8456, 8467, 8496, 8529, 8580, 8693, 8970, 9251, 9550, 9911, 10436
OFFSET
1,2
COMMENTS
In the Mathematica program below, the author of the program uses the initial conditions a(1) = 1, a(2) = 2, and a(3) = 3. This is not necessary. We get the same sequence using the initial conditions a(1) = 1 and a(2) = 2. - Petros Hadjicostas, Nov 14 2019
LINKS
MAPLE
a := proc(n) option remember;
`if`(n < 3, [1, 2][n], a(n - 1) + a(-2^ceil(log[2](n - 1)) + 2*n - 3)):
end proc:
seq(a(n), n = 1..60); # Petros Hadjicostas, Nov 14 2019
MATHEMATICA
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 3}, Flatten@Table[2 k - 1, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)
CROSSREFS
Cf. similar sequences with different initial conditions: A050024 (1,1,1), A050028 (1,1,2), A050032 (1,1,3), A050036 (1,1,4), A050040 (1,2,1), A050044 (1,2,2), A050052 (1,2,4), A050056 (1,3,1), A050060 (1,3,2), A050064 (1,3,3), A050068 (1,3,4).
Sequence in context: A239389 A256219 A078662 * A122456 A186243 A073882
KEYWORD
nonn
EXTENSIONS
Name edited by Petros Hadjicostas, Nov 14 2019
STATUS
approved