The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050029 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2. 14
 1, 1, 2, 3, 4, 7, 9, 10, 11, 21, 30, 37, 41, 44, 46, 47, 48, 95, 141, 185, 226, 263, 293, 314, 325, 335, 344, 351, 355, 358, 360, 361, 362, 723, 1083, 1441, 1796, 2147, 2491, 2826, 3151, 3465, 3758, 4021, 4247, 4432, 4573, 4668, 4716 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Ivan Neretin, Table of n, a(n) for n = 1..8193 FORMULA From Petros Hadjicostas, Nov 08 2019: (Start) a(n) = a(2^ceiling(log_2(n-1)) + 2 - n) + a(n-1) for n >= 4. a(n) = a(n - 1 - A006257(n-2)) + a(n-1) for n >= 4. (End) MAPLE a := proc(n) option remember; `if`(n < 4, [1, 1, 2][n], a(n - 1) + a(Bits:-Iff((n - 2) \$ 2) + 3 - n)); end proc; seq(a(n), n = 1 .. 50); # Petros Hadjicostas, Nov 07 2019 MATHEMATICA Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 2}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 06 2015 *) CROSSREFS Cf. A006257, A050025 (similar, but with different initial conditions). Sequence in context: A047340 A270711 A096118 * A137451 A325091 A057912 Adjacent sequences:  A050026 A050027 A050028 * A050030 A050031 A050032 KEYWORD nonn AUTHOR EXTENSIONS Name edited by Petros Hadjicostas, Nov 07 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 11:24 EDT 2021. Contains 347612 sequences. (Running on oeis4.)