login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049977
a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n -1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 4.
1
1, 3, 4, 11, 20, 50, 93, 185, 368, 920, 1748, 3453, 6876, 13743, 27479, 54957, 109912, 274780, 522082, 1030428, 2053989, 4104555, 8207405, 16413982, 32827412, 65654641, 131309190, 262618337, 525236644, 1050473279, 2100946551, 4201893101, 8403786200, 21009465500, 39917984450
OFFSET
1,2
FORMULA
From Petros Hadjicostas, Nov 07 2019: (Start)
a(n) = a(2^ceiling(log_2(n-1)) + 2 - n) + Sum_{i = 1..n-1} a(i) for n >= 4.
a(n) = a(n - 1 - A006257(n-2)) + Sum_{i = 1..n-1} a(i) for n >= 4. (End)
EXAMPLE
From Petros Hadjicostas, Nov 07 2019: (Start)
a(4) = a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 11.
a(5) = a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = a(1) + a(1) + a(2) + a(3) + a(4) = 20.
a(6) = a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 50.
a(7) = a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = a(3) + Sum_{i = 1..6} a(i) = 93.
a(8) = a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = a(2) + Sum_{i = 1..7} a(i) = 185. (End)
MAPLE
s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
a := proc(n) option remember; `if`(n < 2, 1, `if`(n < 3, 3,
`if`(n < 4, 4, s(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n))))
end proc:
seq(a(n), n = 1 .. 40); # Petros Hadjicostas, Nov 07 2019
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Name edited by and more terms from Petros Hadjicostas, Nov 07 2019
STATUS
approved