

A049961


a(n) = a(1) + a(2) + ... + a(n1) + a(m) for n >= 3, where m = 2^(p+1) + 2  n and p is the smallest number such that 2^p < n  1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 2.


0



1, 2, 4, 9, 17, 42, 79, 156, 311, 777, 1477, 2917, 5809, 11610, 23215, 46428, 92855, 232137, 441061, 870517, 1735233, 3467574, 6933708, 13866716, 27732966, 55465777, 110931477, 221862917, 443725809, 887451610, 1774903215
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS



MAPLE

s:= proc(n) option remember; `if`(n < 1, 0, a(n) + s(n  1)) end proc:
a := proc(n) option remember;
`if`(n < 3, [1, 2][n], s(n  1) + a(2^ceil(log[2](n  1)) + 2  n)):
end proc:


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



