login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049950
a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), with a(1) = 1, a(2) = 2, and a(3) = 1.
0
1, 2, 1, 5, 11, 21, 43, 85, 174, 344, 689, 1377, 2758, 5522, 11054, 22130, 44302, 88520, 177041, 354081, 708166, 1416338, 2832686, 5665394, 11330830, 22661749, 45323668, 90647681, 181296050, 362593481, 725189726, 1450384984
OFFSET
1,2
MAPLE
s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)); end proc;
a := proc(n) option remember; `if`(n < 4, [1, 2, 1][n], s(n - 1) + a(-2^ceil(log[2](n - 1) - 1) + n - 1)); end proc;
seq(a(n), n = 1 .. 40); # Petros Hadjicostas, Apr 23 2020
CROSSREFS
Sequence in context: A110352 A107310 A277279 * A095216 A307258 A174317
KEYWORD
nonn
EXTENSIONS
Name edited by Petros Hadjicostas, Apr 23 2020
STATUS
approved