login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049903
a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
0
1, 2, 1, 2, 4, 8, 16, 26, 34, 92, 184, 362, 706, 1346, 2422, 3860, 5206, 14270, 28540, 57074, 114130, 228194, 456118, 911252, 1819990, 3629570, 7216336, 14261552, 27840046, 52961774, 95291566, 151882910, 204844684, 561572276
OFFSET
1,2
MAPLE
s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
a := proc(n) option remember;
`if`(n < 4, [1, 2, 1][n], s(n - 1) - a(-2^ceil(log[2](n - 1)) + 2*n - 2)):
end proc:
seq(a(n), n = 1..40); # Petros Hadjicostas, Nov 20 2019
PROG
(PARI) lista(nn) = {my(va = vector(nn), s); va[1] = 1; va[2] = 2; va[3] = 1; s = sum(k=1, 3, va[k]); for (n=4, nn, va[n] = s - va[2*n - 2 - 2^ceil(log(n-1)/log(2))]; s += va[n]; ); va; } \\ Petros Hadjicostas, Nov 20 2019 by modifying a program of Michel Marcus
CROSSREFS
Sequence in context: A016013 A193384 A325844 * A325665 A325843 A024739
KEYWORD
nonn
EXTENSIONS
Name edited by Petros Hadjicostas, Nov 20 2019
STATUS
approved