login
A049874
a(n)=b(n)-b(n-1), where b=A049862 (differences of products of Fibonacci numbers.)
2
1, 1, 1, 2, 1, 2, 2, 3, 2, 1, 5, 3, 2, 8, 5, 1, 2, 13, 8, 2, 3, 21, 13, 2, 1, 5, 34, 21, 3, 2, 8, 55, 34, 5, 1, 2, 13, 89, 55, 8, 2, 3, 21, 144, 89, 13, 2, 1, 5, 34, 233, 144, 21, 3, 2, 8, 55, 377, 233, 34, 5, 1, 2, 13, 89, 610, 377, 55, 8, 2, 3, 21, 144, 987, 610, 89, 13, 2, 1
OFFSET
1,4
LINKS
PROG
(PARI) lista(nn) = {my(out = List([0])); for (i=0, nn, for (j=i+1, nn, listput(out, fibonacci(i)*fibonacci(j)); ); ); my(v = Vec(vecsort(select(x->(x < fibonacci(nn+1)), out), , 8))); vector(#v-1, k, v[k+1] - v[k]); } \\ Michel Marcus, May 27 2019
CROSSREFS
Cf. A049862.
Sequence in context: A088431 A254661 A052304 * A060501 A355661 A109129
KEYWORD
nonn
EXTENSIONS
More terms from Michel Marcus, May 27 2019
STATUS
approved