login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n)=b(n)-b(n-1), where b=A049862 (differences of products of Fibonacci numbers.)
2

%I #8 May 27 2019 10:25:48

%S 1,1,1,2,1,2,2,3,2,1,5,3,2,8,5,1,2,13,8,2,3,21,13,2,1,5,34,21,3,2,8,

%T 55,34,5,1,2,13,89,55,8,2,3,21,144,89,13,2,1,5,34,233,144,21,3,2,8,55,

%U 377,233,34,5,1,2,13,89,610,377,55,8,2,3,21,144,987,610,89,13,2,1

%N a(n)=b(n)-b(n-1), where b=A049862 (differences of products of Fibonacci numbers.)

%H Michel Marcus, <a href="/A049874/b049874.txt">Table of n, a(n) for n = 1..1010</a>

%o (PARI) lista(nn) = {my(out = List([0])); for (i=0, nn, for (j=i+1, nn, listput(out, fibonacci(i)*fibonacci(j)););); my(v = Vec(vecsort(select(x->(x < fibonacci(nn+1)), out), , 8))); vector(#v-1, k, v[k+1] - v[k]);} \\ _Michel Marcus_, May 27 2019

%Y Cf. A049862.

%K nonn

%O 1,4

%A _Clark Kimberling_

%E More terms from _Michel Marcus_, May 27 2019