login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049853 a(n) = a(n-1) + Sum_{k=0..n-3} a(k) for n >= 2, a(0)=1, a(1)=2. 4
1, 2, 2, 3, 6, 11, 19, 33, 58, 102, 179, 314, 551, 967, 1697, 2978, 5226, 9171, 16094, 28243, 49563, 86977, 152634, 267854, 470051, 824882, 1447567, 2540303, 4457921, 7823106, 13728594, 24092003, 42278518, 74193627 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = 2*a(n-1) - a(n-2) + a(n-3); 3 initial terms required.
a(n) = a(n-1) + a(n-2) + a(n-4) for n > 3. - Reinhard Zumkeller, Aug 06 2011
Empirical: a(n) = Sum_{k=0..floor(n/3)} A084534(n-2*k, n-3*k). - Johannes W. Meijer, Jun 17 2018
G.f.: (1 - x)*(1 + x) / (1 - 2*x + x^2 - x^3). - Colin Barker, Jun 17 2018
MAPLE
a := proc(n) option remember: if n<2 then n+1 else a(n-1) + add(a(k), k=0..n-3) fi end: seq(a(n), n=0..33); # Johannes W. Meijer, Jun 18 2018
MATHEMATICA
LinearRecurrence[{2, -1, 1}, {1, 2, 2}, 40] (* Harvey P. Dale, May 12 2022 *)
PROG
(Haskell)
a049853 n = a049853_list !! n
a049853_list = 1 : 2 : 2 : 3 :
zipWith (+) a049853_list
(zipWith (+) (drop 2 a049853_list) (drop 3 a049853_list))
-- Reinhard Zumkeller, Aug 06 2011
(PARI) Vec((1 - x)*(1 + x) / (1 - 2*x + x^2 - x^3) + O(x^40)) \\ Colin Barker, Jun 17 2018
CROSSREFS
Cf. A070550, A180662 (Ca2).
Sequence in context: A145778 A102762 A320783 * A162599 A064319 A307241
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 17:42 EST 2023. Contains 367659 sequences. (Running on oeis4.)