OFFSET
0,2
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-1,1).
FORMULA
a(n) = 2*a(n-1) - a(n-2) + a(n-3); 3 initial terms required.
a(n) = a(n-1) + a(n-2) + a(n-4) for n > 3. - Reinhard Zumkeller, Aug 06 2011
Empirical: a(n) = Sum_{k=0..floor(n/3)} A084534(n-2*k, n-3*k). - Johannes W. Meijer, Jun 17 2018
G.f.: (1 - x)*(1 + x) / (1 - 2*x + x^2 - x^3). - Colin Barker, Jun 17 2018
MAPLE
a := proc(n) option remember: if n<2 then n+1 else a(n-1) + add(a(k), k=0..n-3) fi end: seq(a(n), n=0..33); # Johannes W. Meijer, Jun 18 2018
MATHEMATICA
LinearRecurrence[{2, -1, 1}, {1, 2, 2}, 40] (* Harvey P. Dale, May 12 2022 *)
PROG
(Haskell)
a049853 n = a049853_list !! n
a049853_list = 1 : 2 : 2 : 3 :
zipWith (+) a049853_list
(zipWith (+) (drop 2 a049853_list) (drop 3 a049853_list))
-- Reinhard Zumkeller, Aug 06 2011
(PARI) Vec((1 - x)*(1 + x) / (1 - 2*x + x^2 - x^3) + O(x^40)) \\ Colin Barker, Jun 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved