The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049761 Triangular array T, read by rows: T(n,k) = n^3 mod k, for k = 1..n and n >= 1. 4
 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 3, 3, 1, 0, 0, 0, 2, 0, 2, 2, 1, 0, 0, 1, 0, 1, 4, 3, 1, 1, 0, 0, 0, 1, 0, 0, 4, 6, 0, 1, 0, 0, 1, 2, 3, 1, 5, 1, 3, 8, 1, 0, 0, 0, 0, 0, 3, 0, 6, 0, 0, 8, 1, 0, 0, 1, 1, 1, 2, 1, 6, 5, 1, 7, 8, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 LINKS G. C. Greubel, Rows n = 1..100 of triangle, flattened EXAMPLE Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:   0;   0, 0;   0, 1, 0;   0, 0, 1, 0;   0, 1, 2, 1, 0;   0, 0, 0, 0, 1, 0;   0, 1, 1, 3, 3, 1, 0;   0, 0, 2, 0, 2, 2, 1, 0;   0, 1, 0, 1, 4, 3, 1, 1, 0;   0, 0, 1, 0, 0, 4, 6, 0, 1, 0;   0, 1, 2, 3, 1, 5, 1, 3, 8, 1, 0;   ... MAPLE seq(seq( `mod`(n^3, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 13 2019 MATHEMATICA Table[PowerMod[n, 3, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 13 2019 *) PROG (PARI) T(n, k) = lift(Mod(n, k)^3); for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 13 2019 (MAGMA) [[Modexp(n, 3, k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 13 2019 (Sage) [[power_mod(n, 3, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 13 2019 (GAP) Flat(List([1..15], n-> List([1..n], k-> PowerMod(n, 3, k) ))); # G. C. Greubel, Dec 13 2019 CROSSREFS Row sums are in A049762. Cf. A049759, A049760, A049763, A049764. Sequence in context: A286561 A068101 A094263 * A211225 A030618 A025448 Adjacent sequences:  A049758 A049759 A049760 * A049762 A049763 A049764 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 19:29 EDT 2020. Contains 336298 sequences. (Running on oeis4.)