login
A049533
Numbers k such that k^2+1 is squarefree.
8
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
OFFSET
1,2
COMMENTS
Estermann proved that a(n) ~ kn with k = 1.117...; more precisely, there are cx + O(x^(2/3) log x) terms up to x, where c = 1/k = Product (1 - 2/p^2) where the product is over primes p which are 1 mod 4. Heath-Brown improves the error term to O(x^(7/12) log x). - Charles R Greathouse IV, Oct 16 2017, corrected by Amiram Eldar, Jul 08 2020
There are 89489 terms up to 10^5, 894856 terms up to 10^6, 8948417 up to 10^7, 89484102 up to 10^8, and 894841314 up to 10^9. - Charles R Greathouse IV, Nov 26 2017, corrected and extended by Amiram Eldar, Jul 08 2020
LINKS
T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105 (1931), pp. 653-662.
D. R. Heath-Brown, Square-free values of n^2 + 1, Acta Arithmetica 155:1 (2012), pp. 1-13; arXiv:1010.6217 [math.NT], 2010-2012.
FORMULA
Numbers k such that A059592(k) = 1. - Reinhard Zumkeller, Nov 08 2006
EXAMPLE
10 is a member because 10^2 + 1 = 100 + 1 = 101 is squarefree.
Reasons why certain numbers are excluded: 7^2+1 = 2*5^2, 18^2+1 = 13*5^2, 32^2+1 = 41*5^2, 38^2+1 = 5*17^2, 41^2+1 = 2*29^2, 43^2+1 = 74*5^2, 57^2+1 = 130*5^2, 82^2+1 = 269*5^2. - Neven Juric, Oct 06 2008
MATHEMATICA
Select[Range@ 80, SquareFreeQ[#^2 + 1] &] (* Michael De Vlieger, Aug 09 2017 *)
PROG
(Magma) [ n: n in [1..100] | IsSquarefree(n^2+1) ]; // Vincenzo Librandi, Dec 25 2010
(PARI) isok(n) = issquarefree(n^2+1); \\ Michel Marcus, Feb 09 2016
CROSSREFS
Complement of A049532.
Sequence in context: A349536 A038673 A183219 * A052419 A257458 A179439
KEYWORD
nonn
AUTHOR
STATUS
approved