login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A triangle of numbers related to triangle A030526.
10

%I #47 Aug 28 2019 16:41:51

%S 1,5,1,30,15,1,210,195,30,1,1680,2550,675,50,1,15120,34830,14025,1725,

%T 75,1,151200,502740,287280,51975,3675,105,1,1663200,7692300,5961060,

%U 1482705,151200,6930,140,1,19958400,124740000,126913500,41545980

%N A triangle of numbers related to triangle A030526.

%C a(n,1)= A001720(n+3). a(n,m)=: S1p(5; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n,m) (unsigned Lah numbers), S1p(3; n,m)= A046089(n,m), S1p(4; n,m)= A049352(n,m).

%C Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A049029(n,m) := S2(5; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).

%C a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+4 colors. The k roots (j=0) each come in one (or no) color. - _Wolfdieter Lang_, Oct 12 2007

%C Also the Bell transform of A001720. For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 28 2016

%H W. Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

%H W. Lang, <a href="/A049353/a049353.txt">First ten rows. </a>

%F a(n, m) = n!*A030526(n, m)/(m!*4^(n-m)); a(n, m) = (4*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n<m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(2-x)*(2-2*x+x^2)/(4*(1-x)^4))^m)/m!.

%F a(n,k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+4*j-1,4*j-1)))/(4^k*k!). - _Vladimir Kruchinin_, Apr 01 2011

%e Triangle begins:

%e {1};

%e {5,1};

%e {30,15,1}; E.g., row polynomial E(3,x)=30*x+15*x^2+x^3.

%e {210,195,30,1};

%e ...

%e a(4,2)= 195 =4*(5*6)+3*(5*5) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*5*6)=30 colored versions, e.g., ((1c1),(2c1,3c5,4c6)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 5 colors, c1..c5, can be chosen and the vertex labeled 4 with j=2 can come in 6 colors, e.g., c1..c6. Therefore there are 4*((1)*(1*5*6))=120 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*5)*(1*5))=75 such forests, e.g., ((1c1,3c4)(2c1,4c5)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007

%p # The function BellMatrix is defined in A264428.

%p # Adds (1,0,0,0, ..) as column 0.

%p BellMatrix(n -> (n+4)!/24, 10); # _Peter Luschny_, Jan 28 2016

%t a[n_, m_] /; n >= m >= 1 := a[n, m] = (4m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover_, Jul 22 2011 *)

%t BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];

%t rows = 10;

%t M = BellMatrix[(#+4)!/24&, rows];

%t Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 23 2018, after _Peter Luschny_ *)

%o (Maxima) a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+4*j-1,4*j-1),j,1,k))/(4^k*k!); /* _Vladimir Kruchinin_, Apr 01 2011 */

%Y Cf. A049378 (row sums).

%Y Cf. A134139 (alternating row sums).

%K easy,nonn,tabl

%O 1,2

%A _Wolfdieter Lang_