login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049327
A convolution triangle of numbers generalizing Pascal's triangle A007318.
3
1, 15, 1, 120, 30, 1, 540, 465, 45, 1, 1296, 4680, 1035, 60, 1, 1296, 33192, 15795, 1830, 75, 1, 0, 171072, 176688, 37260, 2850, 90, 1, 0, 641520, 1521828, 563409, 72450, 4095, 105, 1, 0, 1710720, 10359360, 6686064, 1375605, 124740, 5565, 120, 1
OFFSET
1,2
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n, m) = 6*(6*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1. G.f. for m-th column: (x*p(5, x))^m, p(5, x) := 1+15*x+120*x^2+540*x^3+1296*x^4+1296*x^5 (row polynomial of A033842(5, m)).
EXAMPLE
{1}; {15,1}; {120,30,1}; {540,465,45,1}; {1296,4680,1035,60,1}; ...
CROSSREFS
a(n, m) := s1(-5, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528.
Cf. A049351.
Sequence in context: A040239 A126141 A131514 * A030527 A027467 A049375
KEYWORD
easy,nonn,tabl
STATUS
approved