login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k = 0..n-1} (a(k) + a(n-1-k)), with a(0) = 1.
1

%I #16 Jan 02 2020 16:13:27

%S 1,2,9,400,19456921,1101216948902114953248,

%T 76796373204229717290826972582321984854855228022915711475735049

%N a(n) = Product_{k = 0..n-1} (a(k) + a(n-1-k)), with a(0) = 1.

%H Andrew Howroyd, <a href="/A049299/b049299.txt">Table of n, a(n) for n = 0..8</a>

%F lim_{m -> oo} log(a(m+1))/log(a(m)) exists and equals 3. - _Roland Bacher_, Sep 06 2004.

%e a(3)=400 because 400=(1+9)*(2+2)*(9+1).

%o (PARI) a(n)={my(v=vector(n+1)); for(n=1, #v, v[n]=prod(k=1, n-1, v[k]+v[n-k])); v[#v]} \\ _Andrew Howroyd_, Jan 02 2020

%Y Cf. A000108 (Catalan numbers) where a(0) = 1, a(n) = Sum_{k=0..n-1} a(k)*a(n-k), A000012 (constant 1) where a(0) = 1, a(n) = Product_{k=0..n-1} a(k)*a(n-k) and A025192 (2*3^(n-1)) where a(0) = 1, a(n) = Sum_{k=0..n-1} a(k)+a(n-k). - _Henry Bottomley_, May 16 2000

%K easy,nonn

%O 0,2

%A _Leroy Quet_

%E Offset corrected and terms a(6) and beyond from _Andrew Howroyd_, Jan 02 2020