OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..8
FORMULA
lim_{m -> oo} log(a(m+1))/log(a(m)) exists and equals 3. - Roland Bacher, Sep 06 2004.
EXAMPLE
a(3)=400 because 400=(1+9)*(2+2)*(9+1).
PROG
(PARI) a(n)={my(v=vector(n+1)); for(n=1, #v, v[n]=prod(k=1, n-1, v[k]+v[n-k])); v[#v]} \\ Andrew Howroyd, Jan 02 2020
CROSSREFS
Cf. A000108 (Catalan numbers) where a(0) = 1, a(n) = Sum_{k=0..n-1} a(k)*a(n-k), A000012 (constant 1) where a(0) = 1, a(n) = Product_{k=0..n-1} a(k)*a(n-k) and A025192 (2*3^(n-1)) where a(0) = 1, a(n) = Sum_{k=0..n-1} a(k)+a(n-k). - Henry Bottomley, May 16 2000
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Offset corrected and terms a(6) and beyond from Andrew Howroyd, Jan 02 2020
STATUS
approved