login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049299
a(n) = Product_{k = 0..n-1} (a(k) + a(n-1-k)), with a(0) = 1.
1
1, 2, 9, 400, 19456921, 1101216948902114953248, 76796373204229717290826972582321984854855228022915711475735049
OFFSET
0,2
LINKS
FORMULA
lim_{m -> oo} log(a(m+1))/log(a(m)) exists and equals 3. - Roland Bacher, Sep 06 2004.
EXAMPLE
a(3)=400 because 400=(1+9)*(2+2)*(9+1).
PROG
(PARI) a(n)={my(v=vector(n+1)); for(n=1, #v, v[n]=prod(k=1, n-1, v[k]+v[n-k])); v[#v]} \\ Andrew Howroyd, Jan 02 2020
CROSSREFS
Cf. A000108 (Catalan numbers) where a(0) = 1, a(n) = Sum_{k=0..n-1} a(k)*a(n-k), A000012 (constant 1) where a(0) = 1, a(n) = Product_{k=0..n-1} a(k)*a(n-k) and A025192 (2*3^(n-1)) where a(0) = 1, a(n) = Sum_{k=0..n-1} a(k)+a(n-k). - Henry Bottomley, May 16 2000
Sequence in context: A012991 A003818 A325619 * A024225 A266289 A000883
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Offset corrected and terms a(6) and beyond from Andrew Howroyd, Jan 02 2020
STATUS
approved