This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048707 Numerators of ratios converging to Thue-Morse constant. 6
0, 1, 6, 105, 27030, 1771476585, 7608434000728254870, 140350834813144189858090274002849666665, 47758914269546354982683078068829456704164423862093743397580034411621752859030 (list; graph; refs; listen; history; text; internal format)



Also interpret each iteration of the construction of the Thue-Morse constant as a binary number converted to a decimal number. Thus (0_b, 01_b, 0110_b, 01101001_b ...) gives the present sequence in decimal. - Robert G. Wilson v, Sep 22 2006

a(n) corresponds to the binary value of the truth-table for the xor operator with n-arguments. - Joe Riel (joer(AT)san.rr.com), Jan 31 2010


Ariel S Koiman, Table of n, a(n) for n = 0..14

Beeler, M., Gosper, R. W. and Schroeppel, R., HAKMEM, ITEM 122 (Schroeppel, Gosper)

Eric Weisstein's World of Mathematics, Thue-Morse Sequence


a(0) = 0, a(n) = (a(n-1)+1)*((2^(2^(n-1)))-1).


Table[ FromDigits[ Nest[ Flatten[ #1 /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, n], 2], {n, 0, 8}] (* Robert G. Wilson v, Sep 22 2006 *)



; returns all but the last element of a list

(define rdc(lambda(x)(if(null? (cdr x))'()(cons (car x) (rdc (cdr x))))))

; gets the two's complement of a given bit

(define twosComplement (lambda (x)(if (eq? x #\0) "1" "0" )))

; gets the two's complement of a string

(define complementOfCurrent (lambda (x y z)(if (eq? (string-length y) z) y (complementOfCurrent (list->string (cdr (string->list x))) (string-append y (twosComplement (string-ref x 0))) z))))

; concatenates the two's complement of a string onto the current string, giving the next element in the TM sequence

(define concatenateComplement (lambda (x i)(if(zero? i) x (concatenateComplement(string-append x (complementOfCurrent x "" (string-length x)))(- i 1)))))

; generates the TM sequence of length 2^x

(define generateThue (lambda (x)(concatenateComplement "0" x)))

; if a bit is 1, get 2^i, where i is the index of that bit from right-left

(define F (lambda (c i)(if (eq? c #\1) (expt 2 i) 0)))

; gathers the sum of 2^index for all indices corresponding to a 1

(define fn (lambda (x sum i stop)(if (eq? i stop) sum (fn (list->string (rdc (string->list x))) (+ sum (F (string-ref x (-(string-length x) 1)) i)) (+ i 1)stop))))

(define f (lambda (x)(fn (generateThue x) 0 0 (string-length (generateThue x)))))

; format: (f x)

; example: (f 10)

; by Ariel S Koiman, Apr 23 2013


The denominators are given by A001146. Consists of every 2^n-th term of A019300. Cf. A048708 (same sequence in hexadecimal) and A014571, A010060, A014572.

Cf. A080814, A080815, A133468.

Sequence in context: A013300 A109819 A162130 * A259156 A075068 A055763

Adjacent sequences:  A048704 A048705 A048706 * A048708 A048709 A048710




Antti Karttunen, Mar 09 1999



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 06:06 EST 2018. Contains 317385 sequences. (Running on oeis4.)