login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048635
Number of rational points of Klein curve over GF(2^n).
0
0, 14, 24, 14, 0, 38, 168, 350, 528, 854, 1848, 4238, 8736, 16646, 31944, 64190, 131376, 265142, 526680, 1044974, 2088768, 4193126, 8404200, 16795166, 33541200, 67059734, 134195064, 268511054, 536991840, 1073711558, 2147211528
OFFSET
1,2
REFERENCES
N. Elkies, The Klein quartic in number theory, pp. 51-101 of S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999. See p. 77 eq. (3.13), (3.14).
FORMULA
a(n) = 2^n + 1 - 3*(a^n + b^n), where a, b are roots of X^2 - X + 2 = 0.
From Colin Barker, Aug 01 2013: (Start)
a(n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 4*a(n-4).
G.f.: 2*x^2*(8*x^2-16*x+7) / ((x-1)*(2*x-1)*(2*x^2-x+1)). (End)
EXAMPLE
G.f. = 14*x^2 + 24*x^3 + 14*x^4 + 38*x^6 + 168*x^7 + 350*x^8 + 528*x^9 + ...
MATHEMATICA
LinearRecurrence[{4, -7, 8, -4}, {0, 14, 24, 14}, 40] (* Harvey P. Dale, May 09 2017 *)
PROG
(PARI) {a(n) = if( n<1, 0, 2^n + 1 - 3 * polsym(x^2 - x + 2, n)[n+1])}; /* Michael Somos, Nov 09 2014 */
CROSSREFS
Cf. A002249.
Sequence in context: A010923 A015850 A020905 * A114872 A106699 A111455
KEYWORD
nonn
STATUS
approved