Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 15 2024 18:55:29
%S 1,3,15,105,1155,15015,255255,4849845,140645505,4360010655,
%T 178760436855,7686698784765,453515228301135,27664428926369235,
%U 1964174453772215685,143384735125371745005,14481858247662546245505
%N Partial products of the sequence (A001097) of twin primes.
%e a(0) = 1 by the usual convention for an empty product. - _N. J. A. Sloane_, Feb 15 2024
%e a(5) = 15015 because 3 * 5 * 7 * 11 * 13 = 15015.
%t nextTwin[{list_, q_}] := Module[{p=NextPrime[q]}, {Join[list, If[PrimeQ[p-2]||PrimeQ[p+2], {p}, {}]], p}]
%t a001097[n_] := First[NestWhile[nextTwin, {{3}, 3}, Length[First[nextTwin[#]]]<=n&]]
%t a048599[n_] := FoldList[Times, 1, a001097[n]]
%t a048599[16] (* _Hartmut F. W. Hoft_, Apr 27 2021 *)
%t Join[{1},FoldList[Times,Union[Flatten[Select[Partition[Prime[Range[30]],2,1],#[[2]]-#[[1]]==2&]]]]] (* _Harvey P. Dale_, Feb 15 2024 *)
%Y Cf. A048598, A001097.
%K easy,nonn
%O 0,2
%A Den Roussel (DenRoussel(AT)webtv.net)
%E More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999