login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of b(n) = (1/16^n)*(4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)).
4

%I #17 Jul 04 2018 06:26:29

%S 47,53,829,79,857,1901,5273,97,1787,5563,4519,4057,19139,743,25681,

%T 229,3687,18647,8329,3853,51067,28069,20483,335,72791,4379,85093,

%U 22901,6557,52673,112577,2501,127759,13571,15989,38083,161003,28319,35813

%N Numerators of b(n) = (1/16^n)*(4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)).

%C Sum_{k>=0} b(k) = Pi was the first BBP formula for Pi (Bayley-Borwein-Plouffe in 1995). Allows one to extract any specified binary digit of Pi.

%H G. C. Greubel, <a href="/A048581/b048581.txt">Table of n, a(n) for n = 0..1000</a>

%H B. Gourevitch, <a href="http://www.pi314.net">L'univers de Pi</a>

%F Sum_{k>=0} b(k) = Pi.

%F a(n) = numerator((1/16)^n*sum(i=1,4,((-1)^(ceiling(4/(2*i))))*(floor(4/i))/(8*n+i+floor(sqrt(i-1))*(floor(sqrt(i-1))+1)))). - _Alexander R. Povolotsky_, Aug 31 2009

%t Numerator[Table[1/16^n*(4/(8*n + 1) - 2/(8*n + 4) - 1/(8*n + 5) - 1/(8*n + 6)), {n, 0, 100}]] (* _G. C. Greubel_, Feb 18 2017 *)

%o (PARI) a(n)=numerator(1/16^n*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)))

%o (PARI) a(n)=numerator((1/16)^n*sum(i=1,4,((-1)^(ceil(4/(2*i))))*(floor(4/i))/(8*n+i+floor(sqrt(i-1))*(floor(sqrt(i-1))+1)))) \\ _Alexander R. Povolotsky_, Aug 31 2009

%Y Cf. A066968.

%K easy,frac,nonn,look

%O 0,1

%A _Benoit Cloitre_, Aug 13 2002