login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048581
Numerators of b(n) = (1/16^n)*(4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)).
4
47, 53, 829, 79, 857, 1901, 5273, 97, 1787, 5563, 4519, 4057, 19139, 743, 25681, 229, 3687, 18647, 8329, 3853, 51067, 28069, 20483, 335, 72791, 4379, 85093, 22901, 6557, 52673, 112577, 2501, 127759, 13571, 15989, 38083, 161003, 28319, 35813
OFFSET
0,1
COMMENTS
Sum_{k>=0} b(k) = Pi was the first BBP formula for Pi (Bayley-Borwein-Plouffe in 1995). Allows one to extract any specified binary digit of Pi.
LINKS
B. Gourevitch, L'univers de Pi
FORMULA
Sum_{k>=0} b(k) = Pi.
a(n) = numerator((1/16)^n*sum(i=1,4,((-1)^(ceiling(4/(2*i))))*(floor(4/i))/(8*n+i+floor(sqrt(i-1))*(floor(sqrt(i-1))+1)))). - Alexander R. Povolotsky, Aug 31 2009
MATHEMATICA
Numerator[Table[1/16^n*(4/(8*n + 1) - 2/(8*n + 4) - 1/(8*n + 5) - 1/(8*n + 6)), {n, 0, 100}]] (* G. C. Greubel, Feb 18 2017 *)
PROG
(PARI) a(n)=numerator(1/16^n*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)))
(PARI) a(n)=numerator((1/16)^n*sum(i=1, 4, ((-1)^(ceil(4/(2*i))))*(floor(4/i))/(8*n+i+floor(sqrt(i-1))*(floor(sqrt(i-1))+1)))) \\ Alexander R. Povolotsky, Aug 31 2009
CROSSREFS
Cf. A066968.
Sequence in context: A106279 A275022 A355601 * A169716 A045140 A104852
KEYWORD
easy,frac,nonn,look
AUTHOR
Benoit Cloitre, Aug 13 2002
STATUS
approved