login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048448 a(n) = prime(n-1) + prime(n+1) (assuming prime(i) = 0 for i < 1). 24
2, 3, 7, 10, 16, 20, 28, 32, 40, 48, 54, 66, 72, 80, 88, 96, 106, 114, 126, 132, 140, 150, 156, 168, 180, 190, 200, 208, 212, 220, 236, 244, 264, 270, 286, 290, 306, 314, 324, 336, 346, 354, 370, 374, 388, 392, 408, 422, 438, 452, 460, 468, 474, 490, 498, 514 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Starting from prime sequence add previous and next term yielding generation 2.

a(n) = A116366(n,n-2) for n>2. - Reinhard Zumkeller, Feb 06 2006

Arithmetic derivative (see A003415) of prime(n-1)*prime(n+1) for n > 1. - Giorgio Balzarotti, May 26 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

MATHEMATICA

Table[If[n < 2, Prime[n+1], Prime[n+1] + Prime[n-1]], {n, 0, 60}]

Join[{2, 3}, First[#]+Last[#]&/@Partition[Prime[Range[60]], 3, 1]] (* Harvey P. Dale, Jan 25 2016 *)

PROG

(PARI) je=[2, 3]; for(n=1, 60, je=concat(je, prime(n)+prime(n+2))); je \\ modified by G. C. Greubel, May 18 2019

(MuPAD) ithprime(i)+ithprime(i+2) $ i = 1..54 // Zerinvary Lajos, Feb 26 2007

(MAGMA) [2, 3] cat [NthPrime(n-1) + NthPrime(n+1): n in [2..60]];  // G. C. Greubel, May 18 2019

(Sage) [2, 3] + [nth_prime(n-1) + nth_prime(n+1) for n in (2..60)] # G. C. Greubel, May 18 2019

(GAP) Concatenation([2, 3], List([2..60], n-> Primes[n-1] + Primes[n+1])) # G. C. Greubel, May 18 2019

CROSSREFS

Generation 1 is the 'prime sequence A000040'. See A048449-A048466. See also A047844.

Sequence in context: A266813 A192116 A088163 * A240302 A281611 A054060

Adjacent sequences:  A048445 A048446 A048447 * A048449 A048450 A048451

KEYWORD

nonn

AUTHOR

Patrick De Geest, May 15 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 07:53 EDT 2019. Contains 324347 sequences. (Running on oeis4.)