login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048269
First palindrome greater than n+2 in bases n+2 and n.
3
5, 26, 21, 24, 154, 40, 121, 60, 181, 84, 253, 112, 337, 144, 433, 180, 541, 220, 661, 264, 793, 312, 937, 364, 1093, 420, 1261, 480, 1441, 544, 1633, 612, 1837, 684, 2053, 760, 2281, 840, 2521, 924, 2773, 1012, 3037, 1104, 3313, 1200, 3601, 1300, 3901
OFFSET
2,1
COMMENTS
a(2), a(3), a(4) and a(6) must be found explicitly.
FORMULA
n even and n >= 8: a(n) = n^2+(n/2+3)*n+1 (which is (1 n/2+3 1) in base n and (1 n/2-2 1) in base n+2).
n odd and n >= 5: a(n) = (n+1)*(n+3)/2 (which is ((n+3)/2 (n+3)/2) in base n and ((n+1)/2 (n+1)/2) in base n+2).
From Colin Barker, Jun 30 2019: (Start)
G.f.: x^2*(5 + 26*x + 6*x^2 - 54*x^3 + 106*x^4 + 46*x^5 - 283*x^6 - 14*x^7 + 259*x^8 - 81*x^10) / ((1 - x)^3*(1 + x)^3).
a(n) = (5 + (-1)^(1 + n) + 2*(5 + (-1)^n)*n + 2*(2 + (-1)^n)*n^2) / 4 for n>6.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>10.
(End)
EXAMPLE
a(15)= (15+3)/2*15+(15+3)/2=144, which is (99) in base 15 and (88) in base 17.
MATHEMATICA
Do[ k = n + 3; While[ RealDigits[ k, n + 2 ][[ 1 ] ] != Reverse[ RealDigits[ k, n + 2 ][[ 1 ] ] ] || RealDigits[ k, n ][[ 1 ] ] != Reverse[ RealDigits[ k, n ][[ 1 ] ] ], k++ ]; Print[ k ], {n, 2, 50} ]
PROG
(PARI) Vec(x^2*(5 + 26*x + 6*x^2 - 54*x^3 + 106*x^4 + 46*x^5 - 283*x^6 - 14*x^7 + 259*x^8 - 81*x^10) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jun 30 2019
CROSSREFS
Cf. A048268.
Sequence in context: A057688 A259207 A300005 * A073069 A042281 A041625
KEYWORD
nonn,easy,base
AUTHOR
Ulrich Schimke (ulrschimke(AT)aol.com)
EXTENSIONS
More terms from Robert G. Wilson v, Aug 15 2000
STATUS
approved