login
A047579
Numbers that are congruent to {0, 2, 5, 6, 7} mod 8.
3
0, 2, 5, 6, 7, 8, 10, 13, 14, 15, 16, 18, 21, 22, 23, 24, 26, 29, 30, 31, 32, 34, 37, 38, 39, 40, 42, 45, 46, 47, 48, 50, 53, 54, 55, 56, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 77, 78, 79, 80, 82, 85, 86, 87, 88, 90, 93, 94, 95, 96, 98, 101, 102, 103
OFFSET
1,2
FORMULA
From Chai Wah Wu, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f.: x^2*(x^4 + x^3 + x^2 + 3*x + 2)/(x^6 - x^5 - x + 1). (End)
From Wesley Ivan Hurt, Jul 28 2016: (Start)
a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 20 + 3*(n mod 5) + 3*((n+1) mod 5) - 7*((n+2) mod 5) - 2*((n+3) mod 5) + 3*((n+4) mod 5))/25.
a(5k) = 8k-1, a(5k-1) = 8k-2, a(5k-2) = 8k-3, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)
MAPLE
A047579:=n->8*floor(n/5)+[0, 2, 5, 6, 7][(n mod 5)+1]: seq(A047579(n), n=0..100); # Wesley Ivan Hurt, Jul 28 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 5, 6, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jul 28 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 5, 6, 7]]; // Wesley Ivan Hurt, Jul 28 2016
CROSSREFS
Sequence in context: A028746 A028779 A050007 * A028726 A047269 A039027
KEYWORD
nonn,easy
STATUS
approved