login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047484 Numbers that are congruent to {3, 5, 7} mod 8. 2
3, 5, 7, 11, 13, 15, 19, 21, 23, 27, 29, 31, 35, 37, 39, 43, 45, 47, 51, 53, 55, 59, 61, 63, 67, 69, 71, 75, 77, 79, 83, 85, 87, 91, 93, 95, 99, 101, 103, 107, 109, 111, 115, 117, 119, 123, 125, 127, 131, 133, 135, 139, 141, 143, 147, 149, 151, 155, 157, 159 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

G.f.: x*(3+2*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 14 2012]

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. - Vincenzo Librandi, May 17 2012

From Wesley Ivan Hurt, Jun 10 2016: (Start)

a(n) = (24*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.

a(3k) = 8k-1, a(3k-1) = 8k-3, a(3k-2) = 8k-5. (End)

a(n) = 3*n - floor((n-1)/3) - ((n-1) mod 3). - Wesley Ivan Hurt, Sep 26 2017

MAPLE

A047484:=n->(24*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047484(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016

MATHEMATICA

Select[Range[0, 300], MemberQ[{3, 5, 7}, Mod[#, 8]]&] (* Vincenzo Librandi, May 17 2012 *)

PROG

(MAGMA) I:=[3, 5, 7, 11]; [n le 4 select I[n] else Self(n-1)+Self(n-3) -Self(n-4): n in [1..70]]; // Vincenzo Librandi, May 17 2012

CROSSREFS

Sequence in context: A283680 A005239 A141107 * A036991 A165887 A316625

Adjacent sequences:  A047481 A047482 A047483 * A047485 A047486 A047487

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 10:15 EDT 2019. Contains 328026 sequences. (Running on oeis4.)