login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047458
Numbers that are congruent to {0, 3, 4} mod 8.
2
0, 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 28, 32, 35, 36, 40, 43, 44, 48, 51, 52, 56, 59, 60, 64, 67, 68, 72, 75, 76, 80, 83, 84, 88, 91, 92, 96, 99, 100, 104, 107, 108, 112, 115, 116, 120, 123, 124, 128, 131, 132, 136, 139, 140, 144, 147, 148, 152, 155, 156
OFFSET
1,2
FORMULA
G.f.: x^2*(3+x+4*x^2)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 13 2012]
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-4, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)
MAPLE
A047458:=n->8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047458(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 3, 4}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 3, 4, 8}, 90] (* Harvey P. Dale, May 31 2017 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 3, 4]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Union of A008586 and A017101. - Michel Marcus, Jun 01 2017
Sequence in context: A222395 A222269 A310011 * A004014 A243177 A113294
KEYWORD
nonn,easy
STATUS
approved