login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046827
Numbers k such that k^2 contains all the digits of k with the same or higher multiplicity.
7
0, 1, 5, 6, 10, 11, 25, 27, 50, 60, 63, 64, 74, 76, 95, 96, 100, 101, 105, 110, 125, 139, 142, 205, 250, 255, 261, 270, 275, 277, 278, 285, 305, 364, 371, 376, 405, 421, 441, 463, 472, 493, 497, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 523, 524, 525
OFFSET
1,3
COMMENTS
10^n is a term for all n. - Amarnath Murthy, Aug 03 2005
EXAMPLE
27 is a term as 27^2 = 729 contains 2 and 7.
255 is a term as 255^2 = 65025 which contains the digits 2,5,5. 502 is a term as 502^2 = 252004 which contains 5, 0, 2.
MAPLE
isA046827 := proc(n) local dgsn, dgsnsq, multsn, multsn2, o, i ;
dgsn := sort(convert(n, base, 10)) ;
dgsnsq := sort(convert(n^2, base, 10)) ;
multsn := [seq(0, i=0..9) ] ;
multsn2 := [seq(0, i=0..9) ] ; for i from 1 to nops(dgsn) do o := op(1+op(i, dgsn), multsn) ; multsn := subsop( 1+op(i, dgsn)=o+1, multsn ) ; od: for i from 1 to nops(dgsnsq) do o := op(1+op(i, dgsnsq), multsn2) ; multsn2 := subsop( 1+op(i, dgsnsq)=o+1, multsn2 ) ; od: for i from 1 to 10 do if op(i, multsn2) < op(i, multsn) then RETURN(false) ; fi ; od: RETURN(true) ; end: for n from 1 to 700 do if isA046827(n) then printf("%d, ", n) ; fi ; od; # R. J. Mathar, Feb 11 2008
MATHEMATICA
Join[{0}, Select[Range[525], Count[Table[DigitCount[#^2, 10, k] - DigitCount[#, 10, k], {k, Union[IntegerDigits[#]]}], _?Negative] == 0 &]] (* Jayanta Basu, Jun 29 2013 *)
PROG
(Python)
from itertools import count, islice
from collections import Counter
def A046827_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda k:Counter(str(k))<=Counter(str(k**2)), count(max(startvalue, 0)))
A046827_list = list(islice(A046827_gen(), 20)) # Chai Wah Wu, Apr 03 2023
CROSSREFS
Cf. A064827 (essentially the same).
Sequence in context: A079259 A275018 A029772 * A064827 A308262 A029780
KEYWORD
nonn,base
EXTENSIONS
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar
STATUS
approved