The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046758 Equidigital numbers. 11
 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 105, 106, 107, 109, 111, 112, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 135, 137, 139 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Write n as product of primes raised to powers, let D(n) = A050252 = total number of digits in product representation (number of digits in all the primes plus number of digits in all the exponents that are greater than 1) and l(n) = number of digits in n; sequence gives n such that D(n)=l(n). A050252(a(n)) = A055642(a(n)). [Reinhard Zumkeller, Jun 21 2011] LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 J. P. Delahaye, "Primes Hunters", Economical and Prodigal Numbers (Text in French) [broken link] R. G. E. Pinch, Economical numbers. [broken link] Eric Weisstein's World of Mathematics, Equidigital Number. Wikipedia, Equidigital number EXAMPLE For n = 125 = 5^3, l(n) = 3 but D(n) = 2. So 125 is not a member of this sequence. MATHEMATICA edQ[n_] := Total[IntegerLength[DeleteCases[Flatten[FactorInteger[n]], 1]]] == IntegerLength[n]; Join[{1}, Select[Range, edQ]] (* Jayanta Basu, Jun 28 2013 *) PROG (Haskell) a046758 n = a046758_list !! (n-1) a046758_list = filter (\n -> a050252 n == a055642 n) [1..] -- Reinhard Zumkeller, Jun 21 2011 (PARI) for(n=1, 100, s=""; F=factor(n); for(i=1, #F[, 1], s=concat(s, Str(F[i, 1])); s=concat(s, Str(F[i, 2]))); c=0; for(j=1, #F[, 2], if(F[j, 2]==1, c++)); if(#digits(n)==#s-c, print1(n, ", "))) \\ Derek Orr, Jan 30 2015 CROSSREFS Cf. A046759, A046760, A050252, A073048. Sequence in context: A267521 A202267 A125975 * A121232 A298746 A122428 Adjacent sequences:  A046755 A046756 A046757 * A046759 A046760 A046761 KEYWORD nonn,base,easy AUTHOR EXTENSIONS More terms from Eric W. Weisstein STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 16:46 EDT 2020. Contains 333197 sequences. (Running on oeis4.)