login
A046496
Primes expressible as the sum of 4 consecutive palindromes.
0
827, 1231, 1553, 2039, 3169, 3251, 159683, 199687, 319699, 1999969987, 2000030009, 3200030021, 80000299997, 200000300009, 20000003000009, 1599999969999983, 15999999996999999983, 24000000003000000013
OFFSET
1,1
FORMULA
Primes of either of two forms: 4*(a+1)*10^(2*k) + 3*10^k + 4*a - 7 or 4*(a+1)*10^(2*k) - 3*10^k + 4*a - 29, where 1 <= a <= 8 and k is positive integer. - Max Alekseyev, Apr 12 2009
EXAMPLE
319699 = 79797 + 79897 + 79997 + 80008.
MATHEMATICA
Select[Total/@Partition[Select[Range[10^6], PalindromeQ], 4, 1], PrimeQ] (* The program generates the first 9 terms of the sequence. *) (* Harvey P. Dale, Nov 24 2022 *)
CROSSREFS
Sequence in context: A104375 A066946 A143799 * A102350 A108830 A341272
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Sep 15 1998
EXTENSIONS
Extended by Max Alekseyev, Apr 12 2009
STATUS
approved