

A046496


Primes expressible as the sum of 4 consecutive palindromes.


0



827, 1231, 1553, 2039, 3169, 3251, 159683, 199687, 319699, 1999969987, 2000030009, 3200030021, 80000299997, 200000300009, 20000003000009, 1599999969999983, 15999999996999999983, 24000000003000000013
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



FORMULA

Primes of either of two forms: 4*(a+1)*10^(2*k) + 3*10^k + 4*a  7 or 4*(a+1)*10^(2*k)  3*10^k + 4*a  29, where 1 <= a <= 8 and k is positive integer.  Max Alekseyev, Apr 12 2009


EXAMPLE

319699 = 79797 + 79897 + 79997 + 80008.


MATHEMATICA

Select[Total/@Partition[Select[Range[10^6], PalindromeQ], 4, 1], PrimeQ] (* The program generates the first 9 terms of the sequence. *) (* Harvey P. Dale, Nov 24 2022 *)


CROSSREFS



KEYWORD

nonn,base


AUTHOR



EXTENSIONS



STATUS

approved



