OFFSET
1,1
COMMENTS
The subsequence of prime partial sum of palindromic primes begins: 2, 5, 17, 5273, 7121, 154643, 283501. What is the smallest nontrivial (i.e., multidigit) palindromic prime partial sum of palindromic primes? [Jonathan Vos Post, Feb 07 2010]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..700
Patrick De Geest, World!Of Palindromic Primes
FORMULA
a(n) = Sum_{i=1..n} A002385(i) = Sum_{i=1..n} {p prime and R(p) = p, i.e., primes whose decimal expansion is a palindrome}. [Jonathan Vos Post, Feb 07 2010]
MATHEMATICA
t = {}; b = 10; Do[p = Prime[n]; i = IntegerDigits[p, b]; If[i == Reverse[i], AppendTo[t, p]; (*Print[p.FromDigits[i]]*)], {n, 4000}]; Accumulate[t] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
Accumulate[Select[Prime[Range[10000]], IntegerDigits[#]==Reverse[ IntegerDigits[#]]&]] (* Harvey P. Dale, Aug 10 2013 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Sep 15 1998
EXTENSIONS
Offset set to 1 by R. J. Mathar, Feb 21 2010
STATUS
approved