login
A046485
Sum of first n palindromic primes A002385.
3
2, 5, 10, 17, 28, 129, 260, 411, 592, 783, 1096, 1449, 1822, 2205, 2932, 3689, 4476, 5273, 6192, 7121, 17422, 27923, 38524, 49835, 61246, 73667, 86388, 99209, 112540, 126371, 140302, 154643, 169384, 184835, 200386, 216447, 232808, 249369, 266030, 283501
OFFSET
1,1
COMMENTS
The subsequence of prime partial sum of palindromic primes begins: 2, 5, 17, 5273, 7121, 154643, 283501. What is the smallest nontrivial (i.e., multidigit) palindromic prime partial sum of palindromic primes? [Jonathan Vos Post, Feb 07 2010]
LINKS
Patrick De Geest, World!Of Palindromic Primes
FORMULA
a(n) = Sum_{i=1..n} A002385(i) = Sum_{i=1..n} {p prime and R(p) = p, i.e., primes whose decimal expansion is a palindrome}. [Jonathan Vos Post, Feb 07 2010]
MATHEMATICA
t = {}; b = 10; Do[p = Prime[n]; i = IntegerDigits[p, b]; If[i == Reverse[i], AppendTo[t, p]; (*Print[p.FromDigits[i]]*)], {n, 4000}]; Accumulate[t] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
Accumulate[Select[Prime[Range[10000]], IntegerDigits[#]==Reverse[ IntegerDigits[#]]&]] (* Harvey P. Dale, Aug 10 2013 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Sep 15 1998
EXTENSIONS
Offset set to 1 by R. J. Mathar, Feb 21 2010
STATUS
approved