login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046385
Smallest palindrome with exactly n palindromic prime factors (counted with multiplicity), and no other prime factors.
3
1, 2, 4, 8, 88, 252, 2772, 82728, 2112, 4224, 8448, 236989632, 48384, 2977792
OFFSET
0,2
COMMENTS
Initial terms of sequences A046376-A046384.
Note that 48384 (k=12) is a 'Droll' number: see A019507.
There are 3 more known terms: a(15)=405504, a(16)=40955904, a(20)=677707776. Any other terms would have at least 18 decimal digits. Conjecture: The sequence is finite and has no other terms than those shown here. - Hugo Pfoertner, Aug 13 2019
EXAMPLE
a(7) = 82728 because it is the smallest palindrome with 7 palindromic and no other prime factors: 82728 = 2^3 * 3^3 * 383. If other prime factors are not excluded, A309565(7) = 29792 = 2^5 * 7^2 * 19 also has exactly 7 palindromic factors and the additional factor 19.
PROG
(PARI) is_A002113(n)={Vecrev(n=digits(n))==n}; \\ M. F. Hasler in A002113
arepalf(nf, x)={forstep(j=nf, 1, -1, if(is_A002113(x[j, 1]), , return(0))); return(1)};
md=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]; \\ Middle digits in odd length palindromes
a=vector(64); a[1]=2; a[2]=4; a[3]=8;
for(d=2, 11, print("Digits: ", d); if(d%2==0, for(k=10^((d-2)/2), 10*10^((d-2)/2)-1, my(dv=digits(k)); P=fromdigits(concat(dv, Vecrev(dv))); x=factor(P); bigom=vecsum(x[, 2]); nf=#x[, 2]; for(j=1, #a, if(a[j], , if(j==bigom, if(arepalf(nf, x), print("a(", j, ")=", a[j]=P)))))), for(k=10^((d-3)/2), 10*10^((d-3)/2)-1, my(dv=digits(k)); for(m=1, 10, P=fromdigits(concat(concat(dv, md[m]), Vecrev(dv))); x=factor(P); bigom=vecsum(x[, 2]); nf=#x[, 2]; for(j=1, #a, if(a[j], , if(j==bigom, if(arepalf(nf, x), print("a(", j, ")=", a[j]=P))))))))); a \\ Hugo Pfoertner, Aug 13 2019
CROSSREFS
Cf. A309565 (additional non-palindromic prime factors allowed).
Sequence in context: A237913 A076886 A309565 * A068664 A199166 A018605
KEYWORD
nonn,base,more,hard
AUTHOR
Patrick De Geest, Jun 15 1998
EXTENSIONS
Definition clarified by Hugo Pfoertner, Aug 08 2019
STATUS
approved