login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046193
Indices of heptagonal numbers (A000566) which are also triangular numbers (A000217).
3
1, 5, 221, 1513, 71065, 487085, 22882613, 156839761, 7368130225, 50501915861, 2372515049741, 16261460067385, 763942477886281, 5236139639782013, 245987105364332645, 1686020702549740705, 79207083984837225313, 542893430081376724901, 25504435056012222218045
OFFSET
1,2
COMMENTS
From Ant King, Oct 19 2011: (Start)
lim_{n->infinity} a(2n+1)/a(2n) = (1/2)*(47+21*sqrt(5)).
lim_{n->infinity} a(2n)/a(2n-1) = (1/2)*(7+3*sqrt(5)).
(End)
From Raphie Frank, Nov 30 2012: (Start)
Where L_n is a Lucas number and F_n is Fibonacci number:
lim_{n->infinity} a(2n+1)/a(2n) = (1/2)*(L_8 + F_8*sqrt(5)),
lim_{n->infinity} a(2n)/a(2n-1) = (1/2)*(L_4 + F_4*sqrt(5)),
a(n) = L_1*a(n-1) + L_12*a(n-2) - L_12*a(n-3)- L_1*a(n-4) + L_1*a(n-5).
(End)
Values of n such that 2*n-1 and 10*n-1 are both perfect squares. - Colin Barker, Dec 03 2016
LINKS
Eric Weisstein's World of Mathematics, Heptagonal Triangular Number.
FORMULA
For n odd, a(n+2) = 322*a(n+1) - a(n) - 96; for n even, a(n+1) = 161*a(n) - 48 + 36*sqrt(20*a(n)^2 - 12*a(n)+1). - Richard Choulet, Sep 29 2007, Oct 09 2007
From Ant King, Oct 19 2011: (Start)
a(n) = 322*a(n-2) - a(n-4) - 96.
a(n) = a(n-1) + 322*a(n-2) - 322*a(n-3) - a(n-4) + a(n-5).
a(n) = (1/20)*((sqrt(5)-(-1)^n)*(sqrt(5)+2)^(2n-1) + (sqrt(5)+(-1)^n)*(sqrt(5)-2)^(2n-1)+6).
a(n) = ceiling((1/20)*(sqrt(5)-(-1)^n)*(2+sqrt(5))^(2n-1)).
G.f.: x*(1 + 4*x - 106*x^2 + 4*x^3 + x^4)/((1-x)*(1-18*x+x^2)*(1+18*x+x^2)).
(End)
MATHEMATICA
LinearRecurrence[{1, 322, -322, -1, 1}, {1, 5, 221, 1513, 71065}, 17] (* Ant King, Oct 19 2011 *)
Select[Range@240000000, IntegerQ@Sqrt[2 # - 1] && IntegerQ@Sqrt[10 # - 1] &] (* Vincenzo Librandi, Dec 04 2016 *)
PROG
(PARI) Vec(-x*(x^4+4*x^3-106*x^2+4*x+1)/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)) + O(x^50)) \\ Colin Barker, Jun 23 2015
(Magma) [n: n in [1..2*10^8] |IsSquare(2*n-1) and IsSquare(10*n-1)]; // Vincenzo Librandi, Dec 04 2016
CROSSREFS
Sequence in context: A290179 A050617 A066462 * A195633 A112999 A337965
KEYWORD
nonn,easy
STATUS
approved