The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046005 Discriminants of imaginary quadratic fields with class number 8 (negated). 5
 95, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376, 395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651, 660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995, 1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 131 discriminants in this sequence (almost certainly but not proved). LINKS Andrew Howroyd, Table of n, a(n) for n = 1..131 Steven Arno, M. L. Robinson and Ferrel S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arithm. 83.4 (1998), 295-330 Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796. C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996. Eric Weisstein's World of Mathematics, Class Number. MATHEMATICA Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[6400], NumberFieldClassNumber[Sqrt[-#]] == 8 &]] (* Jean-François Alcover, Jun 27 2012 *) PROG (PARI) ok(n)={isfundamental(-n) && quadclassunit(-n).no == 8} \\ Andrew Howroyd, Jul 20 2018 (Sage) [n for n in (1..6500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==8] # G. C. Greubel, Mar 01 2019 CROSSREFS Cf. A006203, A013658, A014602, A014603, A046002-A046020, A305416. Cf. A191410. Sequence in context: A306303 A181767 A331663 * A339522 A045121 A207374 Adjacent sequences:  A046002 A046003 A046004 * A046006 A046007 A046008 KEYWORD nonn,fini AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 00:57 EDT 2021. Contains 344980 sequences. (Running on oeis4.)