login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045386 Primes congruent to {1, 2, 4} mod 7. 2
2, 11, 23, 29, 37, 43, 53, 67, 71, 79, 107, 109, 113, 127, 137, 149, 151, 163, 179, 191, 193, 197, 211, 233, 239, 263, 277, 281, 317, 331, 337, 347, 359, 373, 379, 389, 401, 421, 431, 443, 449, 457, 463, 487, 491, 499, 541, 547, 557, 569, 571, 599, 613, 617, 631, 641, 653, 659, 673 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Rational primes that decompose in the field Q(sqrt(-7)). - N. J. A. Sloane, Dec 25 2017

All these primes can be represented by the binary quadratic form x^2 + xy + 2y^2. - Alonso del Arte, Jun 13 2014. Indeed, apart from the fact that 7 is missing, this appears to coincide with A045373. - N. J. A. Sloane, Jun 14 2014

REFERENCES

┼×aban Alaca & Kenneth S. Williams, Introductory Algebraic Number Theory. Cambridge: Cambridge University Press (2004) p. 48, Theorem 2.5.4.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)

Index to sequences related to decomposition of primes in quadratic fields

MATHEMATICA

Select[Prime[Range[300]], MemberQ[{1, 2, 4}, Mod[#, 7]] &] (* Vincenzo Librandi, Aug 11 2012 *)

PROG

(MAGMA) [p: p in PrimesUpTo(600) | p mod 7 in [1, 2, 4]]; // Vincenzo Librandi, Aug 11 2012

CROSSREFS

Cf. A002144, A007645, A045373.

Sequence in context: A004642 A185545 A001032 * A084354 A066725 A087340

Adjacent sequences:  A045383 A045384 A045385 * A045387 A045388 A045389

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 12:26 EDT 2021. Contains 343995 sequences. (Running on oeis4.)