|
|
A044873
|
|
Numbers having, in base 2, (sum of even run lengths)=(sum of odd run lengths).
|
|
3
|
|
|
9, 11, 13, 133, 135, 140, 143, 146, 148, 150, 152, 154, 156, 161, 164, 166, 172, 175, 178, 180, 182, 189, 196, 198, 200, 202, 206, 210, 212, 214, 216, 218, 220, 225, 228, 230, 236, 239, 241, 245, 247, 2065, 2069, 2071, 2077
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..45.
|
|
PROG
|
(Python)
from itertools import groupby
def ok(n):
rl_sums = [0, 0]
for k, g in groupby(bin(n)[2:]):
rl = len(list(g))
rl_sums[rl%2] += rl
return rl_sums[0] == rl_sums[1]
print(list(filter(ok, range(2078)))) # Michael S. Branicky, Sep 11 2021
|
|
CROSSREFS
|
Cf. A007088.
Cf. A044874, A044875, A044876, A044877, A044878, A044879, A044880.
Cf. A044881, A044882, A044883, A044884, A044885, A044886, A044887.
Sequence in context: A254936 A117675 A027726 * A341080 A279519 A307188
Adjacent sequences: A044870 A044871 A044872 * A044874 A044875 A044876
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|