login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042375 Denominators of continued fraction convergents to sqrt(714). 2
1, 1, 3, 4, 7, 18, 25, 43, 111, 154, 8119, 8273, 24665, 32938, 57603, 148144, 205747, 353891, 913529, 1267420, 66819369, 68086789, 202992947, 271079736, 474072683, 1219225102, 1693297785, 2912522887, 7518343559, 10430866446, 549923398751, 560354265197 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,8230,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^18 -x^17 +3*x^16 -4*x^15 +7*x^14 -18*x^13 +25*x^12 -43*x^11 +111*x^10 -154*x^9 -111*x^8 -43*x^7 -25*x^6 -18*x^5 -7*x^4 -4*x^3 -3*x^2 -x -1) / (x^20 -8230*x^10 +1). - Colin Barker, Dec 09 2013
a(n) = 8230*a(n-10) - a(n-20). - Wesley Ivan Hurt, Sep 07 2022
MATHEMATICA
Denominator/@Convergents[Sqrt[714], 50] (* Harvey P. Dale, Mar 15 2011 *)
CoefficientList[Series[-(x^18 - x^17 + 3 x^16 - 4 x^15 + 7 x^14 - 18 x^13 + 25 x^12 - 43 x^11 + 111 x^10 - 154 x^9 - 111 x^8 - 43 x^7 - 25 x^6 - 18 x^5 - 7 x^4 - 4 x^3 - 3 x^2 - x - 1)/(x^20 - 8230 x^10 + 1), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 21 2014 *)
CROSSREFS
Sequence in context: A327318 A344783 A093611 * A153067 A041593 A258740
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 09 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 20:36 EST 2023. Contains 367526 sequences. (Running on oeis4.)