login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041593
Denominators of continued fraction convergents to sqrt(314).
2
1, 1, 3, 4, 7, 18, 25, 868, 893, 2654, 3547, 6201, 15949, 22150, 769049, 791199, 2351447, 3142646, 5494093, 14130832, 19624925, 681378282, 701003207, 2083384696, 2784387903, 4867772599, 12519933101, 17387705700, 603701926901, 621089632601, 1845881192103
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,886,0,0,0,0,0,0,1).
FORMULA
G.f.: -(x^12-x^11+3*x^10-4*x^9+7*x^8-18*x^7+25*x^6+18*x^5+7*x^4+4*x^3+3*x^2+x+1) / (x^14+886*x^7-1). - Colin Barker, Nov 19 2013
a(n) = 886*a(n-7) + a(n-14) for n>13. - Vincenzo Librandi, Dec 21 2013
MATHEMATICA
Denominator[Convergents[Sqrt[314], 30]] (* Harvey P. Dale, Aug 08 2013 *)
CoefficientList[Series[-(x^12 - x^11 + 3 x^10 - 4 x^9 + 7 x^8 - 18 x^7 + 25 x^6 + 18 x^5 + 7 x^4 + 4 x^3 + 3 x^2 + x + 1)/(x^14 + 886 x^7 - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 21 2013 *)
PROG
(Magma) I:=[1, 1, 3, 4, 7, 18, 25, 868, 893, 2654, 3547, 6201, 15949, 22150]; [n le 14 select I[n] else 886*Self(n-7)+Self(n-14): n in [1..40]]; // Vincenzo Librandi, Dec 21 2013
CROSSREFS
Sequence in context: A093611 A042375 A153067 * A258740 A109749 A307738
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 19 2013
STATUS
approved