login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of continued fraction convergents to sqrt(690).
2

%I #20 Jun 13 2015 00:49:40

%S 1,3,4,11,15,56,2927,8837,11764,32365,44129,164752,8611233,25998451,

%T 34609684,95217819,129827503,484700328,25334244559,76487434005,

%U 101821678564,280130791133,381952469697,1425988200224,74533338881345,225026004844259

%N Denominators of continued fraction convergents to sqrt(690).

%H Vincenzo Librandi, <a href="/A042327/b042327.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,2942,0,0,0,0,0,-1).

%F G.f.: -(x^10-3*x^9+4*x^8-11*x^7+15*x^6-56*x^5-15*x^4-11*x^3-4*x^2-3*x-1) / (x^12-2942*x^6+1). - _Colin Barker_, Dec 07 2013

%p convert(sqrt(690), confrac, 30, cvgts): denom(cvgts); # _Wesley Ivan Hurt_, Dec 07 2013

%t Denominator/@Convergents[Sqrt[690], 30] (* _Harvey P. Dale_, Apr 21 2011 *)

%t CoefficientList[Series[-(x^10 - 3 x^9 + 4 x^8 - 11 x^7 + 15 x^6 - 56 x^5 - 15 x^4 - 11 x^3 - 4 x^2 - 3 x - 1)/(x^12 - 2942 x^6 + 1), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jan 20 2014 *)

%Y Cf. A042326, A040663.

%K nonn,frac,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 07 2013