login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042327
Denominators of continued fraction convergents to sqrt(690).
2
1, 3, 4, 11, 15, 56, 2927, 8837, 11764, 32365, 44129, 164752, 8611233, 25998451, 34609684, 95217819, 129827503, 484700328, 25334244559, 76487434005, 101821678564, 280130791133, 381952469697, 1425988200224, 74533338881345, 225026004844259
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2942,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^10-3*x^9+4*x^8-11*x^7+15*x^6-56*x^5-15*x^4-11*x^3-4*x^2-3*x-1) / (x^12-2942*x^6+1). - Colin Barker, Dec 07 2013
MAPLE
convert(sqrt(690), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 07 2013
MATHEMATICA
Denominator/@Convergents[Sqrt[690], 30] (* Harvey P. Dale, Apr 21 2011 *)
CoefficientList[Series[-(x^10 - 3 x^9 + 4 x^8 - 11 x^7 + 15 x^6 - 56 x^5 - 15 x^4 - 11 x^3 - 4 x^2 - 3 x - 1)/(x^12 - 2942 x^6 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 20 2014 *)
CROSSREFS
Sequence in context: A002530 A042709 A231067 * A046114 A116654 A041020
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 07 2013
STATUS
approved